Archive for the ‘DoD Energy’ Category

A New Year Greeting

solar bankability

Share this:

PV Module Form Factor Evolution – Enter SolarClover

The standard PV panel design is essentially a 40+ year old packaging scheme, whether you are talking about crystalline technology or thin-film (glass on glass). It is a form factor that has served the industry well up to this point, but as my readers know, I believe it is keeping the pace of PV adoption from increasing further.  I have long been a proponent of new, lightweight, aesthetically pleasing, and easier-to-install PV modules.  While flexible thin-film has enabled some interesting products from a limited number of vendors, desirable economics and durability for these products is a long way off.

SolarClover solar energy

SolarClover – A New Paradigm for Solar Energy

Enter Armageddon Energy with their unique, well thought-out product, the SolarClover. Clover is a completely new form factor which packages high performance mono-crystalline PV cells on a hexagonal , extruded plastic-aluminum sandwich backing, with a unique polyamid front sheet. Heavy, costly glass and metal framing is eliminated and the resulting product is unbelievably light. The hexagonal modules are then placed on a simple metal tripod racking system which utilizes 3 quick bolts for assembly.  Each tripod has a micro inverter and holds about 450kW of rated output, takes less than 10 minutes to assemble and less than $100/kW to install. Industry average for residential solar installation is $300+/kW to install. Plug and play solar deployment has arrived.

SolarClover shipment packaging is IKEA style flat cardboard boxes – an entire 1kW AC system fits into a standard contractor van, in one truck roll.  And while it’s tempting to look at this product for the DIY market in an outlet like Home Depot, Armageddon is targeting professional tradesmen like roofers, plumbers and electricians to handle installations.  The company provides a clever and patented low cost tool for determining siting applicability – shading, roof orientation, etc. – called the Clover Analysis Tool (or CAT) which substantially lowers the challenges for experienced contractors already servicing the general residential market place but with limited solar energy experience.

SolarClover is centered on providing visually pleasing PV systems to the smaller size residential market where a standard 1kW to

SolarClover new look for PV

Quick Plug and Play Assembly – click to enlarge

2KW Clover system can add enormous cost reduction to electricity consumers with high utility rates, especially in places where peak demand charges are present. Pricing is currently just under $6/Wac with the expectation that scale-up of manufacturing and operations will reduce cost substantially.

Mark Goldman is the high energy founder of Armageddon who clearly has a strong product development and marketing capability and understanding of this market niche.  “We’re focused on the utility consumer who only needs a small PV system, and we wanted to provide those consumers with a system that can be easily installed by their current contractors and is a really elegant addition to the architecture of their home.  We look at the electric grid as a system we’re optimizing for the small residential consumer who will experience significantly lower electricity bills and a quick return on their solar investment.”

Interestingly, Solar Clover has real applicability in the military market in operational and forward deployed environments where simplicity, light weight, quick set up and break down, and high performance are key attributes.  More on this later.

Solar Clover is not without its technology and market challenges. They include things like solar cell packing density, snow loading durability and a small installation cost (difficult for installers who are used to commanding larger invoices).  These are engineering and marketing issues common in new technology commercialization and Mark has a solid roadmap to mitigate and overcome these challenges as volume increases and his technology partners innovate along with him.

This is exactly the kind of form factor innovation that the industry needs to significantly broaden the appeal of PV through lower cost, ease of installation and aesthetics. Early adopters, this is your product and who knows, maybe this is what I will put on my own roof during a planned renovation.


Share this:

Buy American Act Compliant PV Modules – How to Know?

The US PV industry as a whole is grappling with the solar import tariff petition by Solarworld which presents an interesting set of American made, American protectionist, and

Which Modules are BAA compliant for Government Procurement?

wider global trade issues. A great recap with citations of this complex situation which may result in substantial tariffs on solar PV modules that contain crystalline solar cells made in China can be found here.

Within the US federal agency PV market there is another set of complex American content regulations called the Buy American Act (BAA). (Not to be confused with the now expired and poorly written ARRA Buy American clause which governed rapid release of stimulus funds) The BAA requires that products purchased by the federal government must contain 50% or more US content, with finally assembly done in the US.  It sounds simple, but is highly complex to execute, with numerous contradictory requirements and a number “if this, but not this, then this” situations.

Solar PV modules that are sold to federal agencies fall under the BAA.  Fortunately, when it comes to crystalline PV modules, determining which modules are BAA compliant is slightly less complex.  The following is meant to clarify the basic situation but does not dive down into the many permutations and “what if” scenarios.

Example BAA Compliant Module BOM for Federal Agency Installations

To gauge whether a solar PV module is a fully BAA compliant product, the bill of materials (BOM)   needs to be examined. As the example industry average BOM to the left demonstrates, if the solar cell is not made in the US with final assembly in the US, the module cannot be BAA compliant. This is because the solar cell makes up at least 65+% of the completed module, depending on module design and provider.

While it’s fairly clear from this example which solar PV modules should be BAA compliant, the situation is confused by wording sometimes found in solicitations from US government agencies, such as: “ Products and materials employed to fulfill this project must be Buy American Act compliant but applied in a manner consistent with United States obligations under international trade agreements.” These trade agreements include World Trade Organization Government Procurement Agreement (WTOGPA), General Agreement on Tariffs and Trade (GATT) and other international trade agreements all of whose products are treated equally with American made goods provided certain requirements are met.  A good overview of the laws can found here which includes a list of countries with whom the US has signed agreements. Notably for the PV industry, China is not included.

As there is currently no guidance for which modules comply in which circumstances, it may be helpful to think of the situation in tiers, which prioritize the intent of the BAA act:

Tier 1 BAA Compliant PV Modules: Solar cells are made in the US with US final assembly

Tier 2 Trade Treaty Compliant PV Modules: Solar cells made in treaty country with final assembly in US

Tier 3 Trade Treaty Compliant PV Modules: Solar cells made in treaty country with final assembly in treaty country

This is admittedly a simplified explanation but puts the majority of module companies in easy to understand buckets.

Unfortunately there is no official BAA module list vetted independently under direction from a qualified agency. The US Department of Energy has provided a vetted list of lighting products which meet BAA and performance claims, so that government procurement and industry have a clear guideline on which lighting products are acceptable for a given procurement.  An agency such as DOE or DoD  energy should create a similar vetted list for PV modules, given the expansive planned use of PV in the next 10 years.

This topic is becoming increasingly important as PV systems are deployed in public private partnerships such as PPA, ESPC, UESC and other models where the government buys the energy from the system but not the system itself. This type of procurement puts the onus on the project awardees to self-certify BAA compliant modules with no guidance, oversight or penalties from the procuring agency.

And with many non- trade compliant PV module companies boldly claiming BAA compliance with modules made completely outside the US but with simple junction box installation in the US, now would be the time to put a vetted BAA qualified list in place before the problem escalates both programmatically and publicly.


Share this:

Reality Check for DoD Energy – And Its Big!

While there has been much excitement about the sheer size of the Pentagon’s plans for deploying renewable energy, a recent study from DoD’s Office of Installations and Environment on solar applicability on bases in the California, Colorado and Nevada bases offers both optimism and caution for deploying solar in DoD agencies.

Of specific interest, 7000 megawatts (MW) of solar energy (about seven nuclear power plants) can be produced on only four military bases located in the California desert. This is enough energy to meet two thirds of the current DoD wide electricity consumption.

DoD Energy - "We have the Land & the Demand"

The year-long study, conducted by the consultancy ICF International, looked at seven military bases in California and two in Nevada including Fort Irwin, Naval Air Weapons Station China Lake, the Marine Corps’ Chocolate Mountain Aerial Gunnery Range, Edwards Air Force Base, Marine Corps Logistics Base Barstow, Marine Corps Air Ground Combat Center Twentynine Palms and Naval Air Facility El Centro.

It finds that, even though 96 percent of the surface area of the nine bases is unsuited for solar development because of military use, endangered species and other factors, the solar-compatible area is large enough to generate more than 30 times the electricity consumed by the California bases, or about 25 percent of the renewable energy that the State of California is requiring utilities to use by 2015.

The caution here is that assumptions are routinely made about the land-mass that is available on military installations and extrapolations to solar energy market size without any regards to mission compatibility with base question. This includes missions such as live ammunition training, maneuver training, test and evaluations and a multitude of other vital activities.  This study shows the fallacy of making high level extrapolations of land-mass-to-market size for the renewable energy industry.

According to the study, the largest amount of economically viable acreage is found at Edwards Air Force Base (24,327 acres), followed by Fort Irwin (18,728 acres), China Lake (6,777) and Twentynine Palms (553 acres).  ICF found little or no economically viable acreage on the other California bases (Barstow, El Centro and Chocolate Mountain) or the two Nevada bases because the military’s use of the land is incompatible with solar development.

As usual with any military renewable energy report, the study finds that private developers can tap the solar potential on these installations with no capital investment requirement from DoD, and that the development could yield the federal government up to $100 million a year in revenue or other benefits. Private developers can draw on California incentives and subsidies to make these projects economically feasible. But in places like Texas where there are no state subsidy programs and bases pay a blend rate of $0.05/kWh, the solar viability extrapolation may result in a much smaller market unless DoD can find common ground with developers on providing monetary benefits for energy security. More on this in my next blog.

Share this:

All the Best in New Year

Share this:

Operational Energy – The Marines Embrace Renewables

US Department of Defense agencies are leading the nation on the renewable energy front. With plans to have 25% renewable energy use by 2025 and spending $15.2B on DoD energy in 2010, this is a significant and growing market place for the solar energy industry.

DoD energy is segmented into basing power (mostly electricity), operational energy (mostly liquid fuels) and non-tactical vehicle energy.

Operational energy is consumed in forward-deployed situations such as Iraq and Afghanistan among other locations globally.  While a significant amount of diesel

Marines Expeditionary Energy Office Demo at Twentynine Palms, CA.

and JP-8 fuel is used to provide localized power and transportation (Marines = 200,000 gallons per day in Afghanistan), batteries are large part of the picture for soldier power.

A great piece in Outside magazine, “The Marines Go Renewable”, tells the story of how the marines are leveraging renewables, particularly solar, to keep their quick and lethal response capabilities. The main issue has been the Marines outrunning their fuel support systems, requiring a slow down and diminished effectiveness. The problem is the result of their using 3X the amount of batteries and fuel since 1998 to power electronics (command, control & communications) now common in front line operations. Photovoltaic solar technologies in various quick deployment and size configurations have enabled the average marine to reduce the amount of batteries and fuel required on the front line by almost 50%, which has significantly increased speed and effectiveness.

A great quote from the article: “Seeing a picture of a grinning Marine standing next to a still-functioning solar panel riddled with bullet holes makes it difficult to cast renewables as an effete liberal preoccupation.”

Eliminating batteries, winning contests.

Personally, seeing some of the products in use, such as foldable and packable solar PV chargers, has been satisfying, as I worked on these initial products back in 2004. At the Natick Soldier Systems Center, some of the first foldable and portable solar chargers took shape and the skepticism among most of the DoD energy elites and military was strong. The idea that batteries could be replaced by portable PV was a hard sell. As one uniformed person said, “when in a kill or be killed situation, batteries are the only way I trust to stay alive”.

Fortunately, these PV products have demonstrated that soldiers are more secure and can operate more efficiently and lethally.  They are now being deployed widely both in the Marines and the Army. A good example is their prominence in Katherine Hammack’s, (Assistant Secretary of the Army, Installations, Energy and Environment) recent Army energy transition presentations, which can found here. (3 minute mark)

Share this:

Department of Defense Releases Operational Energy Strategy Document

Operational Energy - More Capablity, Less Energy Risk

In an effort to better use energy resources to support their strategic goals, the country’s broader energy security goal, lower risks to the warfighter, and more efficiency use taxpayer resources,  the Department of Defense released its first ever “Operational Energy Strategy” on July 14th.

While the document is fairly high level with many topics and not much detail, it does give the reader a good idea of where DoD is heading. The overall messages are more capability with less fuel, having lower risk via a more diverse energy mix, and increasing effectiveness with less cost. The main goal is energy security using a number of strategies including energy efficiency, energy storage, microgrids, renewable energy, bio fuels and alternative energy. PV solar energy figures prominently in this strategy given its modular nature and ability to add significant value at the soldier, forward deployed and supporting base levels of renewable energy transitions.

The document describes and implementation plan within 90 days that ”will include specific targets and timelines for achieving this strategy in the near-, mid-,and long-term”.

Share this: